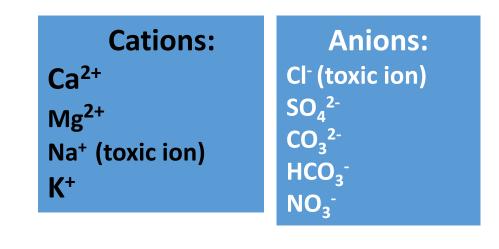
Assessing and managing salinity in grapes

Michael Cahn Water Resources and Irrigation Advisor UC Cooperative Extension (831) 759-7377, mdcahn@ucanr.edu

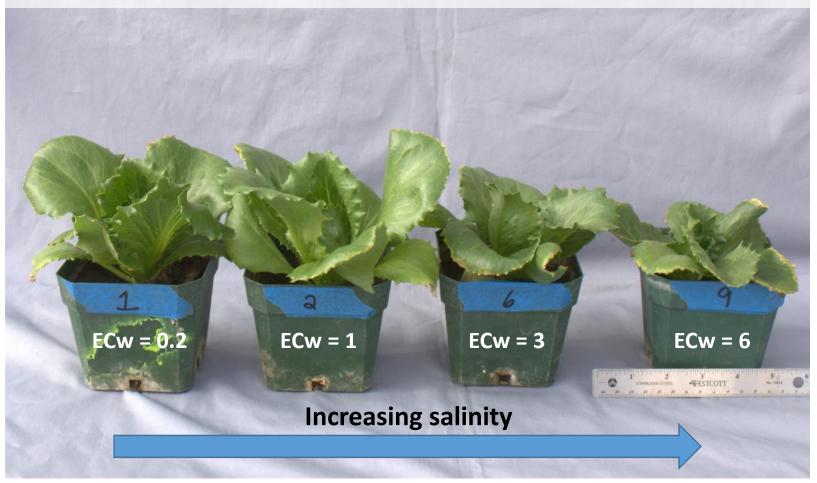

More information:

Water Quality and Agriculture FAO 29: http://www.fao.org/DOCReP/003/T0234e/T0234e00.htm Use of Saline Water for Crop Production FAO 48: http://www.fao.org/docrep/t0667e/t0667e00.htm Agricultural Salinity and Drainage (UCANR Pub. 3375): http://anrcatalog.ucdavis.edu/Details.aspx?itemNo=3375 Managing Salts by Leaching (UCANR Pub. 8850): http://anrcatalog.ucanr.edu/pdf/8550.pdf Drip Irrigation Salinity Management of Row Crops (UCANR Pub. 8447): http://anrcatalog.ucanr.edu/pdf/8447.pdf Crop Salt Tolerance (UCANR pub. 8562): http://anrcatalog.ucanr.edu/pdf/8562.pdf

Demystify salinity management:

- What is salinity?
- ✓ How is salinity characterized and measured?
- How do you determine suitability of water for irrigating crops?
- How much leaching is needed to maintain crop production?

Constituents of salinity


рΗ

Alkalinity: $CO_3^{--} + HCO_3^{--}$ Specific Ion Toxicity: Na, Cl, Boron

Conversion of units: parts per million (ppm) to milliequivalents of charge (meq)

Catio	ons (+)		Anions (-)						
Name	Symbol	charge	divide by:	Name	Symbol	charg	e divide by:		
Sodium	Na	+	23	Chloride	CI	-	35		
Calcium	Ca	++	20	Sulfate	SO ₄		48		
Magnesium	Mg	++	12	Bicarbonate	HCO_3	-	61		
Potassium	K	+	39	Carbonate	CO ₃		30		
Ammonium	NH_4	+	18	Hardness	$CaCO_3$		50		
				Nitrate	NO_3	-	62		

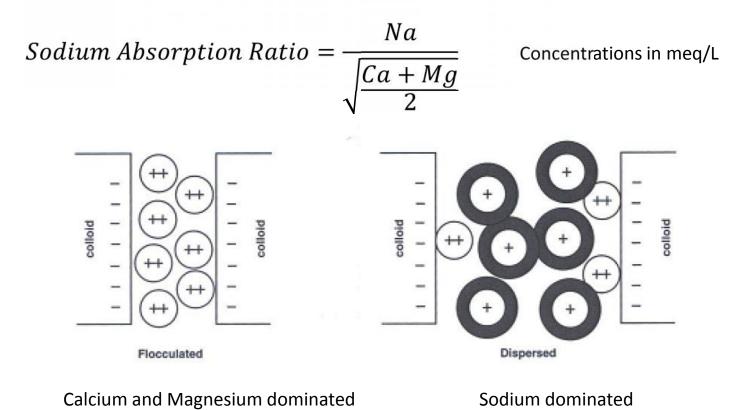
Osmotic Effect of Salts

Specific Ion Toxicity

Photo credit: www.djsgrowers.com.au

Quantifying Salinity

Electrical Conductivity (dS/m)


Total Dissolved Solids (mg/L or ppm)

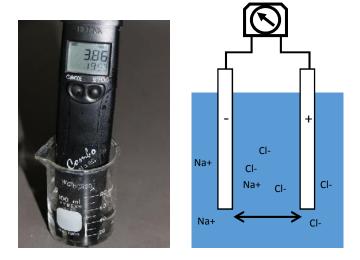
Sodium Adsorption Ratio

Adjusted Sodium Adsorption Ratio

Exchangeable Sodium Percentage (soil)

Assessing Soil Sodicity

Is your soil saline, sodic or both?


	Salinity			Soil aggregate
Classification	(ECe)	Sodicity	рН	structure
	dS/m	SAR		
Non-saline	< 4	<13	< 8.5	normal
Saline	> 4	<13	< 8.5	normal
Saline-sodic	> 4	>13	< 8.5	some degradation
Sodic	< 4	>13	> 8.5	poor

Electrical Conductivity (EC) can be related to salinity

DeciSiemens per meter = dS/m

1 dS/m = 1 mmho/cm = 1 mS/cm 1 dS/m = 1000 μS/cm

$$EC_w = TDS/640$$
 for $EC < 5$ dS/m

 $EC_w = TDS/800$ for EC between 5 and 10 dS/m or salts dominated by Calcium

Types of Electrical Conductivity Measurements

 $EC_w = EC \text{ of } water$

EC_e = EC of saturated soil paste **e**xtract (extracted with distilled water)

EC_{sw} = EC of **s**oil **w**ater (pore water, drainage water)

$$EC_a = EC_b = apparent or bulk soil EC$$

Converting among EC Measurements

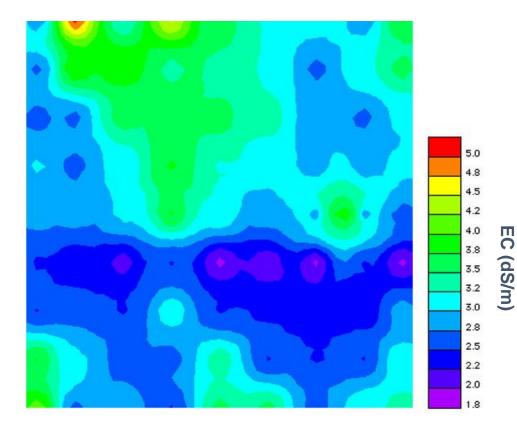
$$EC_e = EC_{sw} / 2$$

$$EC_{sw} = 3 \times EC_{w}$$

$$EC_e = A \times EC_w$$

A = concentration factor dependent on LF (1.6 for a LF = 0.15)

Field measurements of salinity:


Suction lysimeter

$$\mathrm{LF} = \frac{ECw}{ECsw}$$

EM 38

Soil Salinity Probe

Bulk EC Map Using an EM38

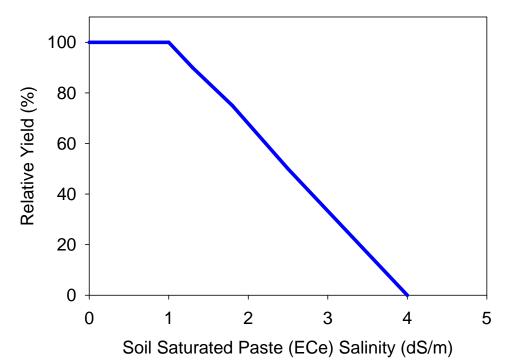
Readings affected by:

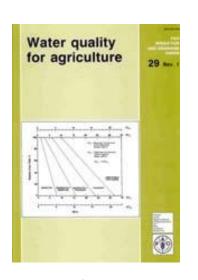
- Soil Salinity
- Soil Compaction (porosity)
- Soil Texture (clay content)
- Soil Moisture Content
- Soil Temperature
- Depth of penetration

Direct measurements of soil salinity: Decagon 5TE probe

- Measures: ECa, Soil temp, volumetric moisture
- Calibration for ECsw
- Good for assessing relative differences within a field
- Differences in soil moisture and bulk density will still interfere with readings

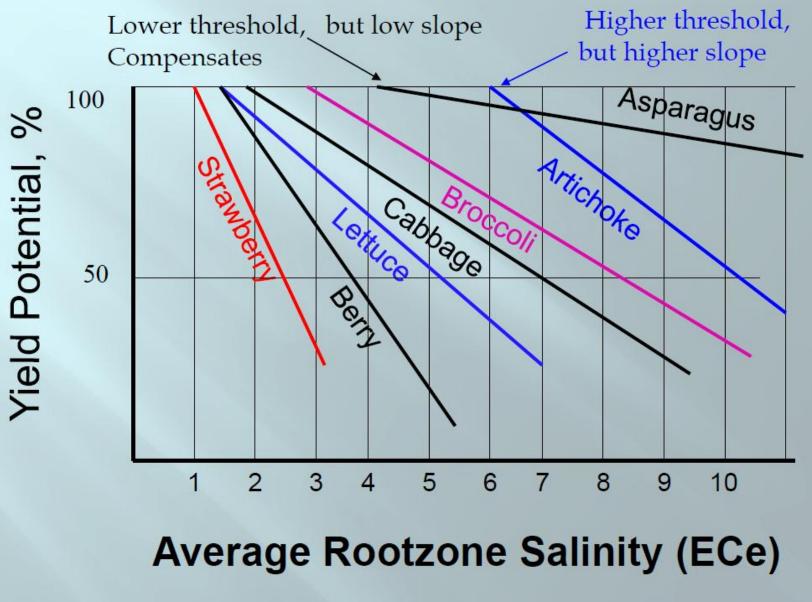
Assessing Suitability of Water for Irrigation


- ✓ Salt tolerance of crop
- ✓ Specific ion sensitivity of crop
- Irrigation method (sprinkler, drip, flood)

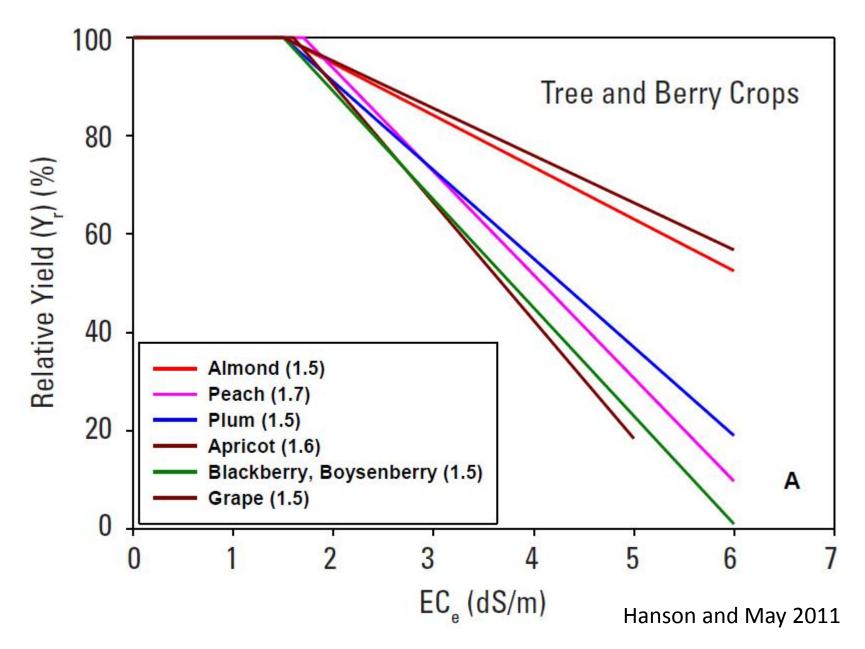


Crop sensitivity to soil salinity is related to ECe

Relative Yield (%) = 100 - slope×(EC_e - EC_e threshold)



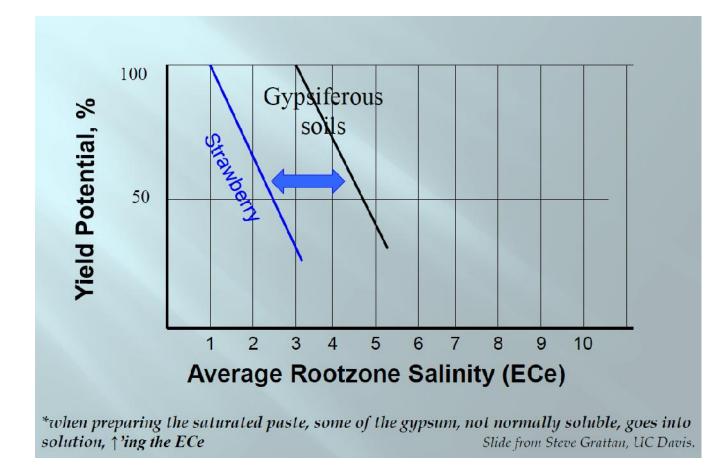
Ayers and Westcot, 1985 Maas and Hoffman, 1977


Crop sensitivity to soil salinity

from Steve Grattan, UC Davis

Maas and Grattan, 1999

Crop sensitivity to soil salinity



Salinity Effects on Tree and Berry Crops

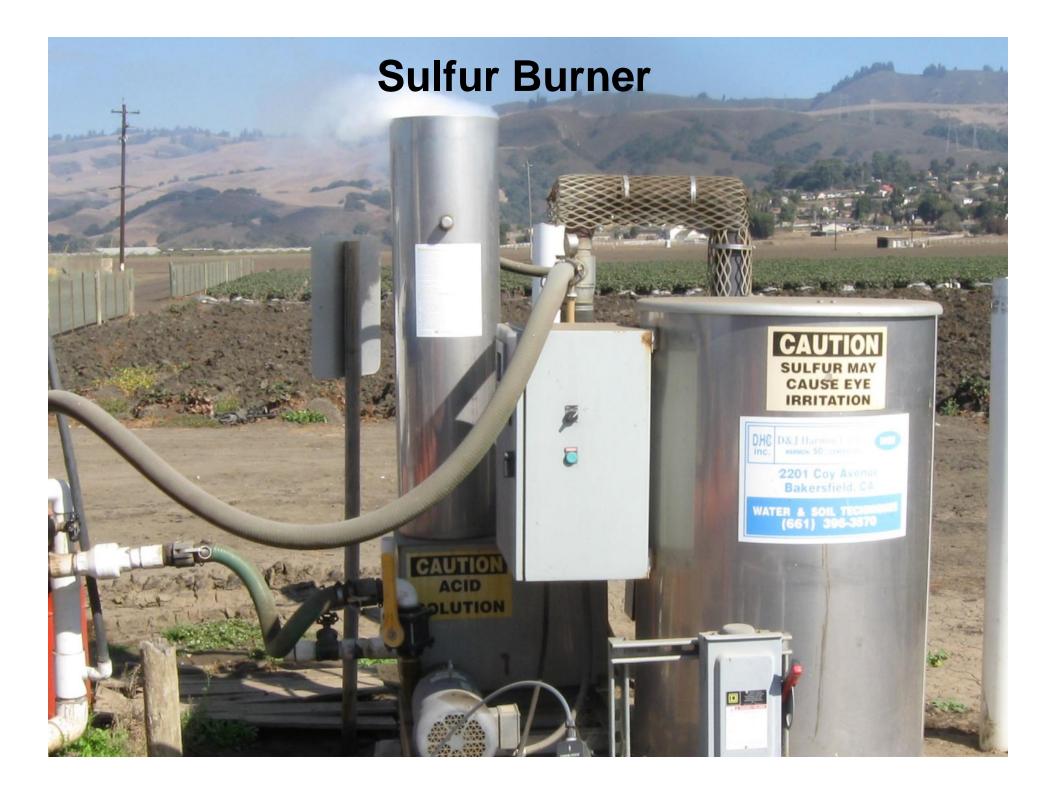
	Percent Yield Reduction								
	C)%	10)%	25	25%			
	ECe	ECw	ECe	ECw	ECe	ECw			
			C	lS/m*					
Apple	1.7	1.0	2.3	1.6	3.3	2.2			
Apricot	1.6	1.1	2.0	1.3	2.6	1.8			
Avocado	1.3	0.9	1.8	1.2	2.5	1.7			
Blackberry	1.5	1.0	2.0	1.3	2.6	1.8			
Fig	2.7	1.8	3.8	2.6	5.5	3.7			
Grape	1.5	1.0	2.5	1.7	4.1	2.7			
Grapefruit	1.8	1.2	2.4	1.6	3.4	2.2			
Lemon	1.7	1.1	2.3	1.6	3.3	2.2			
Olive	2.7	1.8	3.8	2.6	5.5	3.7			
Orange	1.7	1.1	2.3	1.6	3.2	2.2			
Peach	1.7	1.1	2.2	1.4	2.9	1.9			
Pear	1.7	1.0	2.3	1.6	3.3	2.2			
Plum	1.5	1.0	2.1	1.4	2.9	1.9			
Raspberry	1.0	0.7	1.4	1.0	2.1	1.4			
Strawberry	1.0	0.7	1.3	0.9	1.8	1.2			

* 1 dS/m = 640 ppm

Salt tolerance is often higher in water or soil dominated by gypsum

Specific Ion Toxicity

		Degree of F	Restriction on Use ¹					
Specific Ion Toxicity	Units	No restriction	Slight to Moderate	Severe				
Sodium (Na⁺)		Trees, Vines, and other Sensitive Crops -						
surface irrigation	mg/L	mg/L < 70 70 - 200						
sprinkler irrigation	mg/L	< 70	> 70					
		Vege	tables					
sprinkler irrigation	mg/L	< 115	115-460	> 460				
Chloride (Cl ⁻)								
		Trees, Vin	es, and other Sensitive	Crops				
surface irrigation	mg/L	< 140	140-350	> 350				
sprinkler irrigation	mg/L	< 100	> 100					
		Vege	tables					
sprinkler irrigation	mg/L	< 175	175-700	> 700				
		All c	crops					
Boron (B) ²	mg/L	< 0.7	0.7-3	> 3				
Bicarbonate (HCO ₃ ⁻) ¹	meq/L	< 1.5	1.5-7.5	>7.5				


¹ Adapted from FAO irrigation and drainage paper 29, 1985

^{2.} sprinkler irrigation only

Guidelines for water suitability of grapes

Constituent	Units	None	Slight to Moderate	Severe
рН		< 6.5	6.5 -8.4	> 8.4
ECw	dS/m	<1	1.0 - 2.7	> 2.7
Sodium (Na ⁺)	meq/L ppm	< 20 <460		
Chloride (Cl ⁻)	meq/L ppm	<4 < 140	4 - 15 140 - 525	> 15 > 525
Boron (B)	ppm	< 1	1 - 3	> 3
Bicarbonate (HCO ₃ ⁻)	meq/L ppm	< 1.5 < 92	1.5 - 7.5 92 - 458	> 7.5 > 458

Adapted from Neja et al. 1978

Are there potential infiltration problems?

4

	Degree of Restriction on Use ¹						
SAR	No restriction	Slight to Moderate	Severe				
	EC of irrigation water (dS/m)						
0-3	> 0.7	0.7-0.2	<0.2				
3-6	>1.2	1.2-0.3	<0.3				
6-12	>1.9	1.9-0.5	<0.5				
12-20	>2.9	2.9-1.3	<1.3				
20-40	>5.0	5.0-2.9	<2.9				

^{1.} Adapted from FAO irrigation and drainage paper 29, 1985

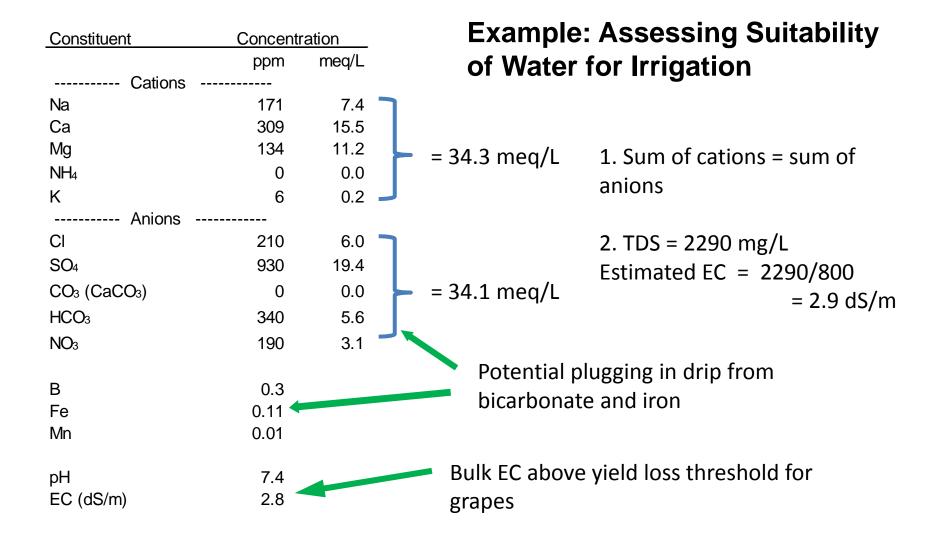
Gypsum Injection (Adds CaSO₄)

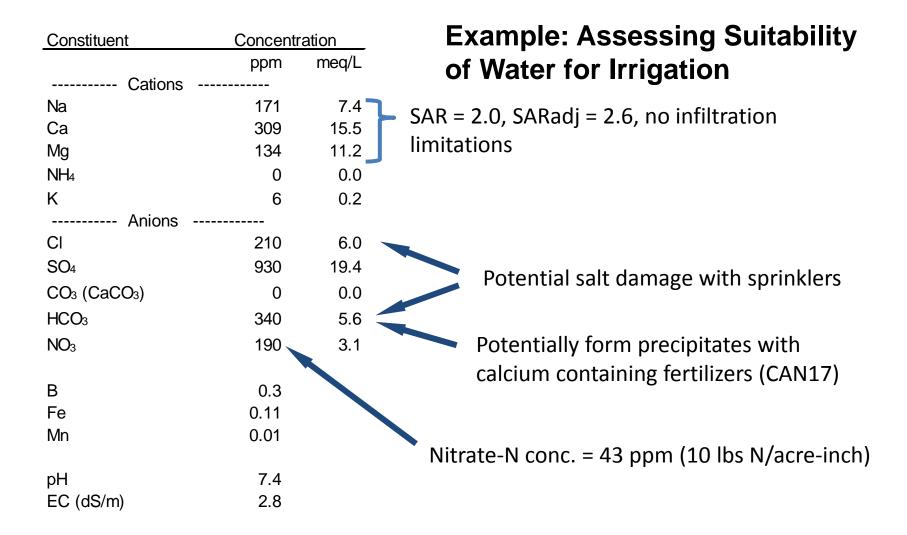
Potential clogging problems for drip and micro-sprinklers?

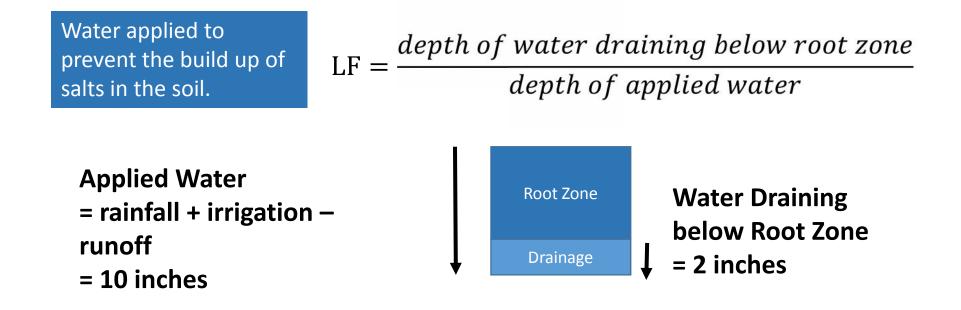
Degree fo Postriction on Use¹

		Degree to Restriction on Use							
Potential Problem	Units	None	Slight to Moderate	Severe					
Physical									
Suspended Solids	mg/L ²	< 50	50 - 100	> 100					
Chemical									
Dissolved Solids	mg/L	< 500	500 - 2000	> 2000					
Manganese	mg/L	< 0.1	0.1 - 1.5	> 1.5					
Iron	mg/L	< 0.1	0.1 - 1.6	> 1.6					
Bicarbonate	meq/L	< 2	2-5	> 5					

1. Adapted from FAO irrigation and drainage paper 29, 1985


2. 1 mg/L = 1 ppm


Iron and manganese bacteria on screen filter

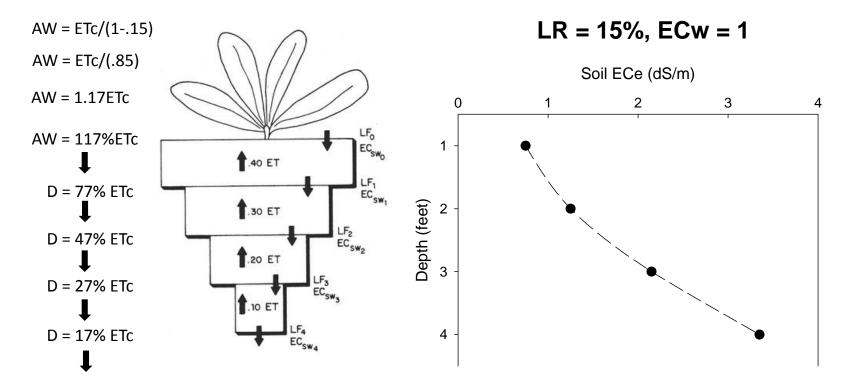

Example: Assessing suitability of water for grapes

What is a leaching fraction (LF)?

Leaching Fraction = 2 in./10 in. = 0.2 or 20%

How do you determine how much water to apply to attain a desired leaching fraction?

$$Applied Water = \frac{ETc}{1 - LF}$$


Example:

If LF = 0.3 (30%) and ET = 15 inches

Applied Water = $\frac{15 \text{ inches}}{1-0.3}$ = 21.4 inches

Leaching Fraction vs Percentage of Crop ET

	Applied Water as a	$LF = \frac{D}{TT + D}$
Leaching	Percentage	ET+D
Fraction	of Crop ET	
	%	
5	105	
10	111	
15	118	
20	125	
25	133	
30	143	
35	154	
40	167	
50	200	
60	250	
70	333	
80	500	

Assumptions in estimating a leaching fraction:

Estimating the Leaching Requirement

$$LR = \frac{\overline{ECw * 100}}{(5 * ECe) - ECw}$$

Example: Water ECw = 2.8 dS/m Yield Threshold (95%): ECe = 2.0 dS/m $\frac{2.8 \, ds/m \, * 100}{(5 * 2.0 \, ds/m) - 2.8} = 39\%$

Estimating the Leaching Requirement

					Sali	nity o	f Irrig	gation	wate	r (EC	C _w) in	dS/m	l	
	_	0.2	0.5	0.7	1	1.3	1.5	2	2.5	3	4	5	6	7
	0.5	9	25	39										
n	1	4	11	16	25	35	43							
S/I	1.5	3	7	10	15	21	25	36	50					
n d	2	2	5	8	11	15	18	25	33	43				
Soil Salinity (EC _e) in dS/m	2.5	2	4	6	9	12	14	19	25	32	47			
EO	3	1	3	5	7	9	11	15	20	25	36	50		
y	3.5	1	3	4	6	8	9	13	17	21	30	40	52	
mit	4	1	3	4	5	7	8	11	14	18	25	33	43	54
Jali	4.5	1	2	3	5	6	7	10	13	15	22	29	36	45
il S	5	1	2	3	4	5	6	9	11	14	19	25	32	39
S_0	5.5	1	2	3	4	5	6	8	10	12	17	22	28	34
	6	1	2	2	3	5	5	7	9	11	15	20	25	30
	6.5	1	2	2	3	4	5	7	8	10	14	18	23	27
	7	1	1	2	3	4	4	6	8	9	13	17	21	25

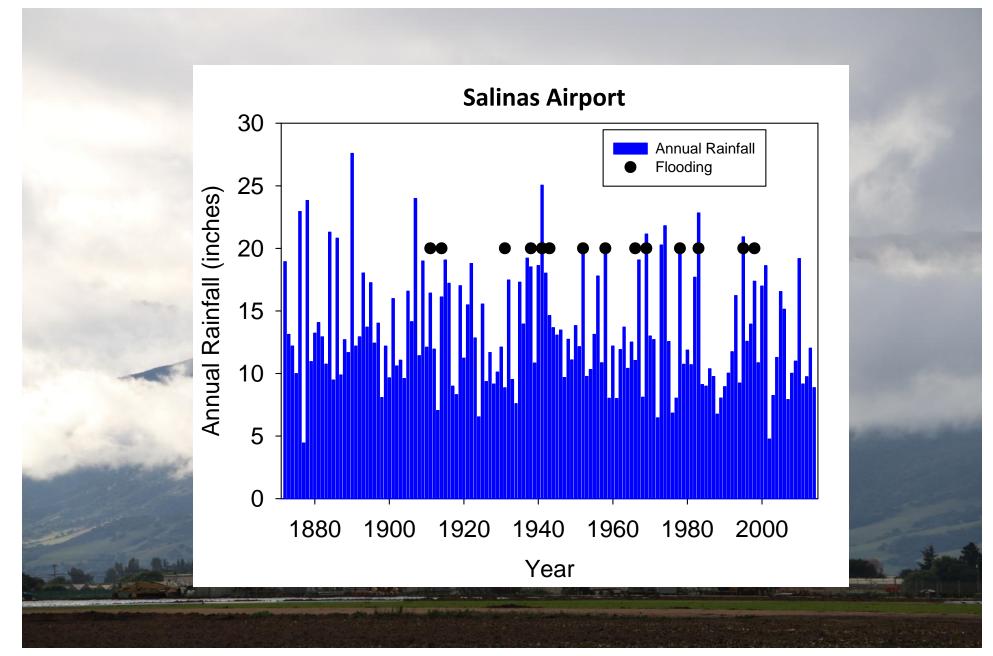
Other considerations to leaching:

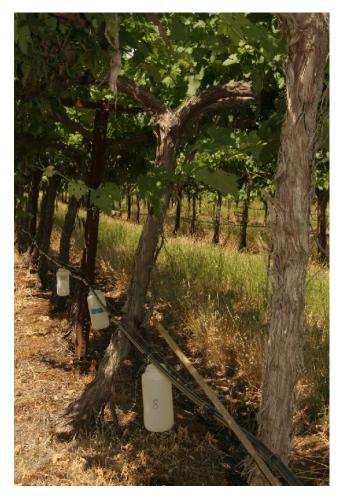
Need drainage (clay pan, perched water table)

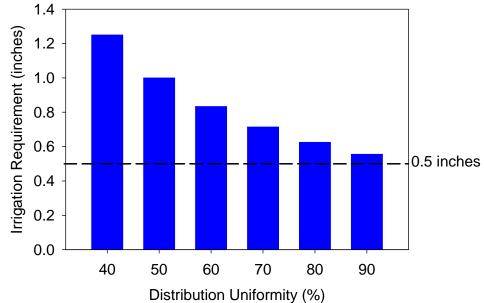
Leads to the leaching of nutrients

Make most of winter rain and pre-irrigations

Enhance Infiltration and Drainage



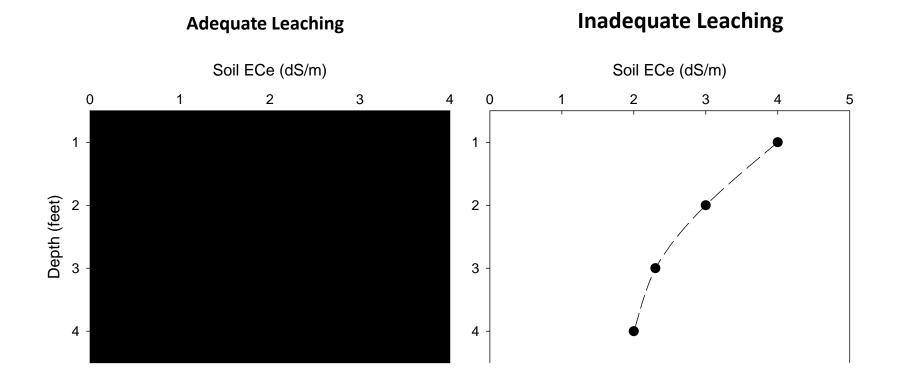

- Tile Drainage
- Soil amendments
- Cover crops
- Deep tillage



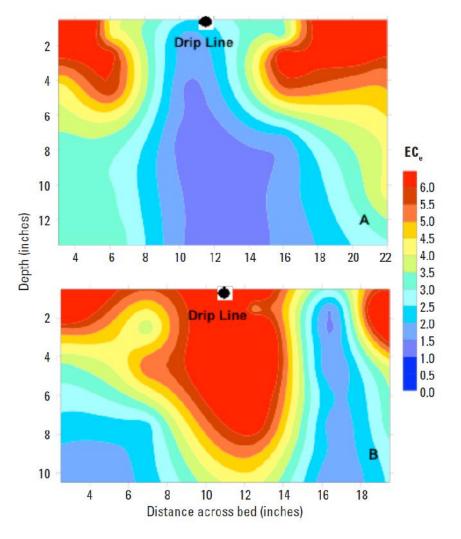
Infiltrate Winter Rain

Improving application uniformity can improve salinity control

Field Assessment of Leaching Fraction



- 1. Sample soil from 3 to 4 layers of depth in root zone
- 2. Measure ECe of soil from each layer
- 3. Calculate the average ECe and compare to yield threshold ECe
- 4. Measure irrigation water salinity (ECw)
- 5. Calculate the actual Leaching Fraction


Example: Water ECw = 1.0 dS/m Average ECe = 2.0 dS/m

$$\frac{1.0 \, ds/m \, * 100}{(5 * 2.0 \, ds/m) - 1.0} = 11\%$$

Field Assessment of Leaching Fraction

Assessing salinity under drip can be challenging

Hanson and May 2011

Summary

- 1.Salinity affects crop growth through osmotic effects and specific ion toxicity.
- 2.All dissolved ions contribute to salinity in water.
- 3.EC of a saturated paste is the measurement correlated with the salt tolerance of crops.
- 4.Leaching fractions are needed to prevent soil salinity from increasing beyond the threshold for crop yield loss.
- 5. Improving the application uniformity of an irrigation system can help improve salt management and reduce nitrate leaching losses.

Managing Salinity under Drought Conditions

- Less rainfall, higher ET, ground water may be saltier
- Deficit irrigation may increase salt build up in soil
- Use an appropriate leaching fraction
- Credit all rainfall, pre-irrigation and germination water
- Maximize application uniformity
- Irrigate more frequently
- Monitor soil and water salinity